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Abstract

Constructing an intuitive theory from data confronts learners with a “chicken-and-egg” prob-

lem: The laws can only be expressed in terms of the theory’s core concepts, but these concepts

are only meaningful in terms of the role they play in the theory’s laws; how can a learner discover

appropriate concepts and laws simultaneously, knowing neither to begin with? We explore how

children can solve this chicken-and-egg problem in the domain of magnetism, drawing on perspec-

tives from computational modeling and behavioral experiments. We present 4- and 5-year-olds

with two different simplified magnet-learning tasks. Children appropriately constrain their beliefs

to two hypotheses following ambiguous but informative evidence. Following a critical interven-

tion, they learn the correct theory. In the second study, children infer the correct number of cate-

gories given no information about the possible causal laws. Children’s hypotheses in these tasks

are explained as rational inferences within a Bayesian computational framework.

Keywords: Theory change; Cognitive development; Causal learning; Bayesian inference;

Magnetism

1. Introduction

Consider the first time a child plays with magnets with no discernable markings such

as “north” and “south,” red or black. Sometimes one side of an object attracts another,

but other sides repel. More, she discovers that these strange objects are attracted to other

things, like the refrigerator door, but neither stick to nor repel from superficially similar

things, like the cupboard door. What theory can explain these interactions? Inferring the
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correct theory purely from such observations is a difficult challenge. The child must

simultaneously discover how to conceptualize the objects (How many types of sides are

there? Which side of each object belongs to each type? How many types of objects are

there?) and how to predict their interactions in terms of causal laws defined on these con-

cepts (Do sides of types X and Y repel or attract? Do magnets stick only to other mag-

nets, or also to metals?). Our goal in this paper is to study empirically how children’s

beliefs might evolve through a process of theory discovery and to understand computa-

tionally how they can converge quickly on a novel but veridical system of concepts and

causal laws.

The difficulty of discovering the laws of magnetism exemplifies a general difficulty

with theory learning: There are often no clear or robust perceptual differences that mark

the boundary between the ontological categories necessary to formulate causal laws. You

might know that there are two categories (e.g., North, South), but mere inspection would

not elucidate which sides are which and what the causal relation is between them. The

very concept of a magnetic pole is abstract and theory-internal. Moreover, you may not

know the number of categories in advance. You might not initially know that the mag-

nets, the refrigerator door, and the cupboard door all belong to different categories, with

different causal roles. We view the challenge of jointly inferring the correct categorical

sorting and the causal laws operating over those categories, as the fundamental “chicken-

and-egg” problem of theory discovery (Carey, 2009; Quine, 1960).

The chicken-and-egg problem is pervasive for both scientific and intuitive theories:

Consider the relation between the concepts “gene,” “allele,” “recessive,” “dominant,” and

the laws of inheritance in classical genetics, or the relation between concepts of “belief,”

“goal,” and “intention,” and the principle of rational action, in intuitive theories of mind.

In each case, if you were given the theory’s core concepts, it seems clear how you might

infer the laws explaining the data, but it is not so clear how the concepts and laws can be

constructed together.

Developmentalists have suggested an analogy between cognitive mechanisms of theory

change in science and childhood (Chi, 1992; Thagard, 1988; Vosniadou & Brewer,

1992), and there is extensive evidence that children construct intuitive theories in the pre-

school years (Carey, 1985; Gopnik & Meltzoff, 1997; Keil, 1989; Murphy & Medin,

1985; Wellman & Gelman, 1992). Demonstrating whether and how preschool children

can solve the chicken-and-egg problem remains an important empirical challenge.

We ask two related questions: first, can children solve the problem of jointly inferring

causal law and category membership in practice; second, how might an intelligent infer-

ence engine solve this chicken-and-egg problem in principle? We show that the inference

engine solution accounts for the inductive leaps made by children when presented with

ambiguous data.

There is a long history in development, exploring children’s early causal and scientific

reasoning (e.g., Bullock et al., 1982; Bruner, Goodnow, & Austin, 1956; Carey, 1985;

Chinn & Brewer, 1998; Piaget, 1930; Schauble, 1990; Shultz, 1982). Most studies of chil-

dren’s causal learning have proceeded by giving the children all the data at once and see-

ing if they make meaningful inferences from that data. These studies reveal important
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clues about children’s learning, but they do not necessarily capture critical components of

conceptual change including the inference, and restructuring of ontological kinds. To get

at these questions of representational change over time, we use a new “mini-microge-

netic” method to explore this learning (Bonawitz et al., 2011). We give children evidence

in stages and test their beliefs at each stage. This approach provides a more precise way

to track the transitions from one belief to the next, following each introduction of new

evidence.

We focus on magnetism because it can illustrate the chicken-and-egg problem in chil-

dren’s theory learning, yet it is fairly straightforward to frame. Magnetism can be adapted

easily for simplified discovery experiments with preschool-aged children. Moreover, mag-

netism is a domain that has been extensively studied in the history of science, which may

provide a skeletal analogy to children’s theory discovery. Our studies are inspired by this

historical development.

1.1. A brief history of magnetism

Cognitive historians have explored how scientists form coherent theories from their

experience and have connected theory change in science with models of cognition (Gent-

ner, 2002; Gentner et al., 1997; Gruber & Barrett, 1974; Kuhn, 1962; Wiser & Carey,

1983). The phenomena of magnetism provide an excellent case study in both the history

of scientific discovery (e.g., see Nersessian, 1992) and the parallel possibilities for how

children might come to their intuitive theories.

In 1269, Peregrinus first discovered the two poles of a lodestone and the repulsion

between them. He proposed that the spontaneous attraction of lodestones to distinctive

geographic directions could be the basis for classifying the stones’ poles, but he got the

theory wrong—he held that poles of the same type attract (Keithley, 1999).

It took almost another 350 years before William Gilbert reversed this misconception.

He posited that Earth was also in fact a large magnet, and hence, the interactions between

the poles of Earth and any lodestone should be the same as between any two lodestones

(Gilbert, 1600/1958). Then, a critical experiment tested whether poles of the same type

attract or repel: bringing together the sides of two lodestones that were both attracted to

Earth’s north. The fact that these two sides will repel, rather than attract, showed that

they should in fact be of the same type as Earth’s South Pole. The correct law of mag-

netic poles dictates that north and south poles attract each other, while poles of the same

type repel.

1.2. Toward empirical exploration of the chicken-and-egg problem

Our experiments are inspired by the history of magnetism. In our first study, children

are given the initial number of categories but must still infer which objects belong to

which categories and what the causal laws are between these categories. First, we test

children’s beliefs after they observe a limited sample of interactions, analogous to seeing

how a set of lodestones interacts with a single reference magnet (e.g., Earth). These
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interactions are informative about the correct theory but still ambiguous in a crucial way.

Second, we see how children’s beliefs change after they observe a critical intervention

that should determine a single correct theory. We also look at children’s beliefs before

they observe any evidence, to reveal the breadth of the theories they entertain and to test

for any initial biases. In our second study, we ask whether preschoolers can infer the cor-

rect number of categories even without information about the possible causal laws.

We present a model that is abstract enough to generate a broad space of possible causal

theories. This generative model uses a probabilistic context-free grammar that provides a

broad language for defining multiple possible theories, and an objective syntax for scoring

them. We show that the space of theories is vast, but that (a) search over this space is

possible, and (b) rational learners are in principle capable of solving the chicken-and-egg

problem—discovering the “best” theories—if they can appropriately integrate several

pieces of evidence. While we specifically rely on a probabilistic Horn-clause grammar

(i.e., a set of rules for building logical expressions that include predicates, their attributes,

an relations), we mean it to serve as a representative of the more general approach to the-

ory induction that relies on hierarchical probabilistic program induction (e.g., Lake,

Salakhutdinov, & Tenenbaum, 2015; Piantadosi, Tenenbaum, & Goodman, 2016). That is,

rather than arguing that Horn clauses are necessarily a component of cognition—we see

them as a useful approach toward understanding the chicken-and-egg problem laid out

here because it can capture ways to model a probabilistic language of thought.

While previous studies have demonstrated impressive parallels between children’s cau-

sal learning and ideal Bayesian analyses (e.g., for reviews, see Gopnik, 2012; Gopnik &

Bonawitz, 2015; Gopnik & Wellman, 2012; Xu & Kushnir, 2012), they have barely

begun to address the hard problems of theory construction. Previous work has not

explored how children solve the chicken-and-egg problem of jointly discovering a the-

ory’s core concepts and causal laws. In previous work, children are either given the cau-

sal laws and required to infer only the correct categories for objects (e.g., Gopnik &

Sobel, 2001; Sobel, Tenenbaum, & Gopnik, 2004) or given all (or most) of the key cate-

gory distinctions for objects and required to infer only the causal laws (Lucas, Bridgers,

Griffiths, & Gopnik, 2014; Schulz, Goodman, Tenenbaum, & Jenkins, 2008). Other stud-

ies of theory change have examined how older school-aged children gradually revise rule

strategies or beliefs following evidence (e.g., Siegler, 1996). Our central questions remain

unaddressed: Can children in experimental theory-learning tasks solve the joint inference

problem when neither kinds nor causal laws are known, and can this inference be

explained as a form of Bayesian computation?

Although we used magnetism as a model for our studies, we constructed a new set of

magnet-like objects that follow slightly different and simpler laws. We also included a

condition in which the laws were the opposite of the laws of actual magnets: like-sides

attract instead of repel. We did this for two reasons. First, real-world theories of mag-

netism can be quite complex. Second, some preschool-aged children may already have

some familiarity with magnets and the true theory of magnetic poles, so we wanted to

include a condition that could serve as a “knowledge control” to ensure that our approach

was assessing real learning rather than a mere demonstration of prior knowledge.

4 of 29 E. Bonawitz et al. / Cognitive Science 43 (2019)



2. Experiment 1a: Inferring category membership and causal laws

We designed a task loosely based on Gilbert’s historical experiments. Children were

shown a set of six identical, unlabeled, magnetic blocks that contained either a north pole

or a south pole on one face of the block. All other sides, including the reverse side of the

block, were inert and never participated in any interactions. We labeled two additional

blocks, “Yellow” and “Blue.” These labeled blocks were placed at opposite ends of a lin-

ear frame, analogous to Earth’s geographically referenced magnetic field. Children were

told that blocks of particular colors might push against other blocks or stick to other

blocks but that we did not know exactly how they worked. That is, some information is

given to help constrain the space of plausible theories, but the chicken-and-egg remains:

inferring which of the unlabeled blocks are Yellow or Blue along with the laws of how

Yellow and Blue blocks causally interact.

Next, each of the six blocks was systematically bumped into the two labeled (Yellow

and Blue) blocks, to see whether it pushed or stuck, and children were asked to infer the

color of each unlabeled block. Following this sorting stage, children were asked to

describe how pairs of blocks will interact as a function of their color.

At this stage, many hypotheses about the causal laws between Yellow and Blue blocks

are ruled out. However, ambiguity remains. The correct causal law depends on the correct

sorting. Specifically, under the correct law of magnetism, one might sort all blocks that

repel to the labeled Yellow block and stick to the labeled Blue as “Yellow” (and vice

versa for the blocks that behave the opposite way)—following the rule that objects of the

same type repel and objects of different types attract.

However, a second possibility given these data is that objects of the same type attract
and objects of different types repel. Under this hypothesis, one might sort all blocks that

stick to the labeled Yellow block and repel to the labeled Blue as “Yellow” (and vice

versa for the blocks that behave the opposite way). We refer to these two hypotheses as

the “correct-magnet hypothesis” and the “reverse-magnet” hypothesis, respectively (see

Fig. 1, “SPS” and “PSP”).

The fact that these two different possible theories remain after this initial evidence

helps illustrate how this task goes beyond a simple classification task in which children

need only sort objects into categories. Not only must children infer which blocks belong

to which of the two groups and identify the correct color label for these two groups; they

must also infer the rules about how objects within (and between) these groups interact.

The data are perfectly consistent with two different classification schemes, and therefore

two different theories about the causal rules that guide interactions between those

schemes.

Next, children observe a crucial piece of data, which is analogous to Gilbert’s insight-

ful experiment: a single interaction between either two blocks sorted as the same color or

two blocks sorted as different colors. Together with the earlier evidence, this last piece of

data simultaneously disambiguates the color of all the blocks and the causal laws relating

the colors. The single “disambiguating” intervention does not provide sufficient informa-

tion on its own to infer the correct law. To make this inductive leap, children must be

E. Bonawitz et al. / Cognitive Science 43 (2019) 5 of 29



able to simultaneously integrate the informative (but ambiguous) evidence in the first tri-

als with the disambiguating evidence in the last trial.

This scenario allows us to examine children’s solutions to the chicken-and-egg problem

following different stages of evidence. First, we can see what children do when they get

Fig. 1. Eight possible hypotheses for the causal laws in our simplified magnets example. For simplicity, we

adopt a naming scheme in which the “stick” relation (represented by the dark black lines) is labeled as “S”

and the “push” relation (represented by the lighter gray lines) is labeled as “P.” Thus, the hypothesis in the

upper left corner labeled SSS specifies that blue sticks to blue; blue sticks to yellow; and yellow sticks to yel-

low. The hypothesis in the lower right corner, labeled PPS, specifies that blue repels blue, blue repels yellow,

and yellow sticks to yellow. Note that the correct hypothesis for magnets is PSP, but the reverse hypothesis

(SPS) is also consistent with almost all of the data children observe in our experiment.
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informative but still ambiguous data. We can explore how they update their beliefs and

manage uncertainty over hypotheses. At this point, a rational learner should retain two

hypotheses, the correct-magnet hypothesis and the reverse-magnet hypothesis, ruling out

all others. Second, we can see what children do when they see the results of a “crucial

experiment.” At this point, they should rationally converge on a single best hypothesis.

2.1. Methods

2.1.1. Participants
Seventy-eight 4- and 5-year-olds were recruited from an urban area science museum

(M = 59 months, range = 47–73 months). Approximately half1 of the participants were

female and a range of ethnicities proportional to urban populations in the U.S. Northeast

were represented.

2.1.2. Design
All children participated in the ambiguous evidence phase, which involved a sorting

task and a theory prediction task. After collecting data from 28 children, we added the

disambiguating evidence phase that included a disambiguating evidence event and second

theory prediction task. Thus, the following 50 children participated in both the initial

ambiguous evidence phase as well as the disambiguating evidence phase. These final 50

children were assigned to either the Magnet Consistent condition (n = 30) or the Magnet
Inconsistent condition (n = 20). One child in the Magnet Inconsistent condition and two

children from the Magnet Consistent condition were dropped because they failed to com-

plete the experiment.

2.1.3. Procedure
Ambiguous evidence phase: Children were shown a 4 in 9 2 in 98 in stand covered in

felt that had a Yellow block (1.5 in3) at one end and a Blue block (1.5 in3) at the other

and were told that Yellow and Blue blocks might push or stick to one another or to a

block of the same color. The child’s job was to help figure out how the blocks worked.

For the sorting task, the experimenter brought out the six identical red blocks and told

children, “See these blocks? They lost their Yellow and Blue covers, so we need your

help figuring out which blocks are Yellow and which are Blue.” The experimenter then

picked up the first block and showed that it pushed against the [yellow, blue] labeled

block and stuck to the [blue, yellow] block, and then asked, “What color do you think

this block should be?” The experimenter then followed the same procedure with the

remaining five blocks, selecting the next block in a pseudorandom order2. After children

generated a response, the experimenter placed the block to one side of the table or the

other (depending on the child’s label, the experimenter sorted all the blocks that the child

labeled as “Yellow” together and all the blocks that the child labeled as “Blue” in a sepa-

rate pile).

The ambiguous theory prediction task followed the sorting task; children were asked:

“What do you think would happen if two yellow blocks bumped together, would they push
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or stick to each other? What if two blue blocks bumped together, would they push or stick?

How about if a yellow and blue block bumped together, would they push or stick?”

Magnet consistent condition: Following the ambiguous evidence phase, those children

who went on to complete the disambiguating evidence phase were told, “Okay let’s see

what would happen if we took two blocks and bumped them together.” All children

observed just one interaction: approximately half of the children observed two blocks

from the same pile (sorted by the children), and the other children observed two blocks

from the different piles interact (blue–yellow). During the interaction, the experimenter

also described what was happening (e.g., “these two blocks stick!”). Children were then

asked all three theory prediction questions again, which, critically, included the other two

unobserved interactions.

Magnet inconsistent condition: The Inconsistent condition was identical to the Consistent
condition with one exception: rather than the blocks behaving as predicted by actual mag-

netism, the experimenter manipulated the blocks so that the reverse result was “ob-

served”—if two blocks were taken from the same pile, the experimenter pushed the

blocks together (against their natural repelling force) such that the blocks appeared to

stick, and if two blocks were taken from different piles, the experimenter retracted the

blocks as they came close together so that they appeared to repel. At the end of both con-

ditions, children were asked whether they knew what a magnet was and whether they

thought these blocks were like magnets3.

2.2. Results and discussion of Experiment 1a

Responses were coded by a research assistant and all responses uniquely and unam-

biguously fell into one of two groups (“Yellow” or “Blue” during the sorting task; or

“Stick” or “Push” in the theory tasks). A portion (~40%) of the responses was also coded

by the first author; reliability was 100%. There was no effect of sorting order or age on

responding. For visual ease in our figures, we report children’s theories following a sim-

ple binary coding scheme, where P = push/repels and S = sticks/attracts, and the ordering

is given by [blue-blue; blue-yellow; yellow-yellow]. Thus, the correct-magnet theory

would be written as (PSP) and the reverse-magnet theory would be written as (SPS). See

Fig. 1.

2.2.1. Sorting
We coded whether children sorted the unlabeled blocks according to a magnet-consis-

tent rule or a magnet-inconsistent rule. Most children (84%) sorted at least five of six

blocks according to one of the two patterns, our criterion for success, and of these 84%,

most sorted all six blocks consistently (also 84%). Of the 84% of children who sorted

according to one of the two rules, almost all sorted according to the magnet-inconsistent

rule (94%), only a handful sorted according to the magnet-consistent rule—a point we

return to in the modeling results.
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2.2.2. Ambiguous evidence theory prediction
Following the observation of ambiguous evidence, most children generated only the

two theories that were consistent with the ambiguous evidence, the correct-magnet theory

(PSP) and the reverse-magnet theory (SPS). Children generated both of these hypotheses

above chance (correct-magnet: one-tailed Binomial test (n = 15/75), p < .043; reverse-

magnet: one-tailed, Binomial test (n = 35/75), p < .0001). (See Fig. 2, column 1.).

2.2.3. Final theory prediction
Children in both conditions also learned from the final intervention trial, generating sig-

nificantly different (and evidence-consistent) responses (Magnet Consistent moving from 6/
28 PSP responses to 13/28: Fisher’s exact one-tailed test (28), p = .045; Magnet Inconsis-
tent moving from 9/19 SPS responses to 15/19: Fisher’s exact one-tailed test (19), p = .046).

That is, even though preschoolers observed just one of the three interactions, the single

observation was sufficient to inform their predictions about the other two interactions; chil-

dren were more likely to generate the correct-magnet theory in the Magnet consistent condi-
tion and children were more likely to generate the reverse-magnet theory in the Magnet
Inconsistent condition, v2(2, N = 47) = 21.71, p < .0001 (Fig. 2, columns 2 and 3).

3. Experiment 1b: Establishing the priors on children’s theories

Although children certainly learned following the single disambiguating intervention in

the final learning phase, it is possible that the children’s pattern of responses in the earlier

Fig. 2. Children’s predictions from Experiment 1a, after seeing the six unlabeled blocks interact with the

Yellow and Blue blocks (left); after observing the final disambiguating intervention that is magnet consistent

(center) or after observing the final disambiguating intervention that is magnet inconsistent (right).
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ambiguous evidence phase reflected a prior bias to follow a response pattern that matched

the magnet-inconsistent and magnet-consistent rules, rather than genuinely learning from

the evidence in this initial phase. We can rule out this deflationary account by asking

whether, prior to seeing any evidence, children entertain a range of theories or only enter-

tain the magnet consistent and inconsistent theories.

3.1. Methods

3.1.1. Participants
We tested a new group (N = 20) of 4- and 5-year-olds recruited from an urban area

daycare (M = 53 months, range = 47–62 months). ‘ were female and a range of ethnici-

ties proportional to Northern California urban populations were represented.

3.1.2. Procedure
“Push,” “Stick” Language Check. Children were introduced to four items (a toy hippo,

toy onion, toy ball, and toy eggplant). Children were told that sometimes things push and

some other things stick. The experimenter manipulated the hippo and the onion and acted

as if the objects repelled, by rapidly pushing away the items from each other when they

drew close together, and described the items as “pushing.” The experimenter then manip-

ulated the ball and eggplant and acted as if the objects attracted, by rapidly moving the

objects toward each other as they drew closer with difficulty pulling them apart, and

described the items as “sticking.” This manipulation ensured that children understood

what “stick” and “push” meant, as well as provided children with the same number of

stick and push relations observed in Experiment 1a.

Children were then shown two yellow and two blue blocks and were asked (in random

order) the theory question: “What do you think would happen if two yellow blocks

bumped together, would they push or stick to each other? What if two blue blocks

bumped together, would they push or stick? How about if a yellow and blue block

bumped together?” Children’s responses for each of the pairs were recorded.

3.2. Results and discussion of Experiment 1b

Preschoolers entertained a variety of theories. Overall, children favored the “sticking”

property in their responses, a point we will return to in the modeling results. However,

the distribution of theories given by the responses did not differ from chance (Chi-square

goodness of fit, v2(7, N = 20) = 10.4, p = .167). Contrasting the distribution of hypothe-

ses to Experiment 1a revealed significant differences between Experiments (Pearson Chi-

square, v2(7, N = 94) = 19.9, p = .006), suggesting that children’s responding in the

ambiguous evidence phase of Experiment 1a reflected genuine learning from the initially

ambiguous but still informative evidence (see Fig. 5, left bottom panel).

We note two potential population differences between Experiment 1a and Experiment

1b, which might call into question the applicability of this control. The first is that chil-

dren in Experiment 1a were tested in a children’s center at a science museum while the
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children in Experiment 1b were tested in a daycare setting. However, despite different

testing locations, we believe these samples to be relatively well matched. Participants

recruited at the daycare came from a similar socioeconomic status to those tested in the

science museum. Specifically, daycare participants were drawn from a middle-class pool

(typically academic parents on a university campus), which matches to samples drawn

from the science museum setting.

A second difference is that the age of participants in Experiment 1b was significantly

younger than the mean age of participants in Experiment 1a. One might be concerned

that perhaps the younger participants in Experiment 1a were actually “noisy” performers

matching the “no bias” younger children in Experiment 1b. It could be that older children

carry the positive result in Experiment 1a.

To test for this possibility, we looked at the age-matched sample of participants from

Experiment 1a (N = 32, M = 53.5 months) to see whether these children performed “noisy”

sorts (as would be predicted under the alternative explanation). Critically, we found that this

group of age-matched children also performed as well as the originally reported, complete

sample (sorting with 81.3% consistency). Furthermore, this subset of younger children did

not significantly differ in performance from the older subset (n = 44) of children, two-tailed

Fisher’s exact test, p = .75. Finally, contrasting the distribution of hypotheses between

Experiment 1b and the matched-to-age subset of Experiment 1a revealed significant differ-

ences between groups, Pearson’s v2(14, n = 52) = 15.36, p = .03. This suggests that even

controlling for age, the performance of participants in Experiment 1a could not be explained

by prior bias.

Thus, taken together, our empirical results suggest that in practice, even preschool-

aged children can solve the “chicken-and-egg” problem at least in simplified contexts.

4. Experiment 2: Inferring the number of categories

In Experiment 1, the total number of categories (two) was given to children, although

they still had to infer which blocks belonged to each category and what the causal laws

were between categories. In our second experiment, we were interested in whether chil-

dren could correctly infer the total number of categories, even without knowing about the

causal laws or how to sort the objects into categories. This question is particularly inter-

esting because some modeling work on the “blessing of abstraction” (Goodman et al.,

2011) suggests the possibility that learners might actually be able to infer this higher

order abstract information even before they learn all the details of the causal laws them-

selves.

Answering this question required stimuli that could behave more “flexibly” than our

magnetic blocks from Experiment 1, so rather than objects that stick and repel, we cre-

ated blocks that could light up, depending on our experimental needs. In particular, we

could predetermine the number of categories (two vs. three), the sorting of objects into

those categories, and the causal rules (e.g., whether objects of certain categories should

light objects from other categories). Critically, children were not aware of how many
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categories of objects we had predefined but simply observed whether pairs of blocks

would light up or not based on these predetermined factors.

The particular pattern of lighting was designed to parallel the real behavior of magnets,

even though the objects themselves were nonmagnetic and responded causally by “light-

ing.” Note that in Experiment 1, the relevant two categories (yellow and blue) paralleled

the north and south poles of a magnet. However, magnetism also involves a different

three-category classification of objects, into magnets, (ferromagnetic) metals, and inert

objects. These three categories all interact in different ways, and the goal of this experi-

ment was to explore children’s ability to capture this categorical sorting in an analogous

causal context.

Thus, the “lighting-up” pattern of our constructed blocks paralleled the interactions of

actual magnets, metals, and inert objects. Thus, if two blocks were (secretly) labeled as

“magnets,” both would light (just as two magnets exert a force on one another); if one

was a “magnet” and one was a “metal,” both would light (because magnets exert a force

on metals); but two “metals” would not light each other, and any block interacting with

an inert block would not light. After the evidence, children were asked to sort the blocks

into one, two, or three groups.

By varying the total number of categories (e.g., whether there were only two cate-

gories—just magnets and inerts, or three—magnets, metals, and inerts), we could investi-

gate whether children could learn this higher order information from data alone.

Furthermore, by constructing an analogous causal system using the lighting response, we

could test whether children could learn this theory, without actual expectations or biases

that could derive from experience with real magnets.

4.1. Methods

4.1.1. Participants
Twenty-eight 4-, 5-, and 6-year-olds were recruited from bay area preschools and chil-

dren’s science museums (M = 62 months, range = 49-80 months) and were randomly

assigned to either a 3-Category condition or a 2-Category condition. Approximately half

of the participants were female and a range of ethnicities proportional to urban popula-

tions in Northern California were represented. An additional six children were tested but

dropped in the 3-Category condition (two children did not finish the experiment because

the session ran over the allotted testing time, the blocks malfunctioned for one child, and

the experimenter made methodological errors—deviating from script—for three children).

An additional six children were tested but dropped in the 2-Category condition (two chil-

dren self-terminated the experiment before completion, the blocks malfunctioned for two

children, the experimenter made an error for one child, and one child’s session was inter-

rupted by a classmate).

4.1.2. Stimuli
A large cardboard equilateral triangle divided into four smaller triangles (each a differ-

ent color) was used as a sorting mat.
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Sorting warm-up task: Three sets of seven objects were used in the sorting warm-up task

designed to get children familiar with a sorting task in general and also to give children

practice grouping items by an intrinsic property (rather than a superficial property such as

color). The number of different correct groups was varied to give children experience

with the task structure without biasing them to infer that objects should always be

grouped into a specific set-size. For the 1-grouping set: Seven small wooden blocks with

magnets attached to the bottom so that they all could be used to pick up a metal washer4;

2-grouping set: Seven plastic eggs that were either filled with sand or were empty inside

so that some made noise and others did not when shaken; 3-grouping set: Seven plastic

balls filled with pennies so that they were light, medium, or heavy in weight. All of the

objects were decorated with a unique identifying color and pattern (e.g., blue with yellow

stripes, or green with black polka dots). There was no relationship between the colors

and the object properties.

Sorting test trials: Seven 2.5” by 2.5” blocks, each with a LED light inside and deco-

rated with a unique identifying color and pattern that did not correlate with their activa-

tion group, were used in the sorting test trials. (See Fig. 3.) When the experimenter

bumped two of these blocks together, she could surreptitiously activate the lights with a

switch located at the back of the block so that it appeared to the children that the bump-

ing action was causing the blocks to light up. Memory cards with pictures of each block

pair either lighting up or not lighting up were used to help children remember the pattern

of activation.

4.1.3. Procedure
Sorting warm-up task: Children were asked to help figure out how different objects

worked and which objects belonged together so that the experimenter could later teach

her friend about the objects. The experimenter took out the sorting map and told children

to sort objects into one, two, or three groups based on what kind of object they were and

not based on their appearance. Feedback was given when needed so that children’s final

sorts reflected the appropriate number of groups for each set. The order of presentation of

the training sets was randomized across participants.

Sorting test trials: After the warm-up task, the experimenter aligned the seven test blocks

in a pseudorandom order. The experimenter explained that some of these blocks lit up

when bumped together and others did not. Children were asked to help figure out how

these blocks worked and which blocks belonged together. Children observed as the exper-

imenter proceeded to bump each block together with all of the other blocks for a total of

21 interactions. After each bump, the experimenter remarked, “See that? Both blocks [lit

up, did not light up]” and placed a memory card on the table depicting what had hap-

pened. (See Fig. 3 for details on stimuli and the pattern of interactions as given by condi-

tion.) After bumping each of the blocks together, the experimenter asked children to

identify the pairs of blocks that had lit up. Children were encouraged to refer to the mem-

ory cards for assistance.
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(b) 
(c)  3-Category Condition

Magnet Metal 1 Metal 2 Metal 3 Inert 1 Inert 1 Inert 3
Magnet Light Light Light Not lit Not lit Not lit
Metal 1 Not lit Not lit Not lit Not lit Not lit
Metal 2 Not lit Not lit Not lit Not lit
Metal 3 Not lit Not lit Not lit
Inert 1 Not lit Not lit
Inert 2 Not lit
Inert 3

(c) 2-Category Condition
Magnet 1 Magnet 2 Magnet 3 Magnet 4 Inert 1 Inert 2 Inert 3

Magnet 1 Light Light Light Not lit Not lit Not lit
Magnet 2 Light Light Not lit Not lit Not lit
Magnet 3 Light Not lit Not lit Not lit
Magnet 4 Not lit Not lit Not lit
Inert 1 Not lit Not lit
Inert 2 Not lit
Inert 3

(a)

Fig. 3. Procedures and design of Experiment 2. (a) Depiction of the blocks and of two blocks lighting. (b)

Example placement of memory cards for the 2-Category Condition. (c) Tables of Activations: 3-Category
Condition activations: one “Magnet” Block; three “Metal” Blocks; three “Inert” Blocks; 2-Category Condi-
tion activations: four “Magnet” Blocks; three “Inert” Blocks.
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Next, the experimenter asked children if they thought there were one, two, or three

kinds of blocks. Children’s responses were recorded. Finally, children were asked to sort

the blocks into groups, placing blocks that were the same kind of block together. As with

the training objects, children were instructed to group the test blocks based on what hap-

pened when they bumped together and not based on how they looked. The experimenter

initiated the sorting process by putting one block onto the sorting mat and then asking

children whether a second block: “Is just like this one (pointing to the first block) and

should go in the same pile, or do you think it’s different and should go in a new pile?”

The experimenter placed the block where children indicated and then repeated with the

remaining blocks until all blocks were sorted into one, two, or three groups. After all of

the blocks were sorted, the experimenter asked children if they wanted to change any of

the groupings and allowed them to move blocks around accordingly. Children were

allowed to refer to the memory cards while sorting the blocks.

4.2. Results and discussion of Experiment 2

Children were more likely to say there should be three groups in the 3-Category condi-

tion (M = 2.64 groups; number of children sorting into three groups = 9/14) than they

were in the 2-Category condition (M = 2.07 groups; number of children sorting into two

groups = 11/14), t(26) = 3.1, p < .01, two-tailed Fisher’s exact test, pa = .018; pb = .012.

Children were more likely to select three categories in the 3-Category condition than pre-

dicted by chance (chance = .33 because children could sort into 1, 2, or 3 groups; two-

tailed Binomial test, p = .03) and were more likely to select two categories in the 2-Cate-
gory condition than predicted by chance (two-tailed Binomial test, p = .001). See Table 1.

Although children were able to infer the correct number of groups by condition, chil-

dren had difficulty accurately sorting the blocks into appropriate groups. For both condi-

tions, we computed a Rand index, which provides a measure of similarity between how

data are clustered (e.g., a measure of accuracy) that can be applied when class labels are

not used. This is given by considering the pairs of elements that were correctly grouped

(and not grouped) together versus the pairs that were incorrectly grouped (or not

grouped). See Rand (1971) for details. We also computed a Rand index score for 15 arti-

ficial samples for each condition, assuming children were responding completely at

chance. Comparing children’s Rand index scores for each condition to the index scores

obtained by samples of random guessing revealed that children in the 2-Category condi-

tion sorted the blocks significantly better than the chance sample (t(27) = 3.72, p < .001);

however, children in the 3-Category condition were not significantly better than the

chance sample (t(27) = .97, p = .341).
Although children were able to infer that blocks should be sorted into three categories

in the 3-Category condition, they had some difficulty sorting the blocks appropriately.

This result is consistent with the “Blessing of Abstraction” (Goodman et al., 2001). The

demands of simultaneously tracking the specific category membership of seven unique

blocks may have also been too cognitively demanding for our preschoolers.
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Results of Experiments 1 and 2 suggest that children can solve the chicken-and-egg

problem, at least in somewhat simplified contexts. We now turn to an investigation of

how such learning may be solvable in principle following a generative Bayesian frame-

work and comparing results to our specific models.

5. Models of theory change

There is a rich tradition in Cognitive Science of understanding theory change in physical

domains by building models of this process, and in particular in building frameworks to

search for algorithms (e.g., see Langley, 1981). Here, we focus on Bayesian models, as they

can help explain how children’s learning dynamics relate to the behavior of an ideal learner,

who updates prior beliefs rationally in light of observed statistical evidence. They can also

explain how challenging learning problems may be solved in principle. While there has been

growing interest in neurally inspired models, these approaches cannot capture the key com-

ponent of theory change discussed here, namely the search process that can model step-by-

step changes in beliefs as each new evidence is acquired. Thus, we turn to a stochastic

search approach that can operate over a logical representation of rules to explore the degree

to which the model follows the same overall dynamics as observed in our empirical studies.

6. Solving the chicken-and-egg problem in a Bayesian framework

Kemp, Tenenbaum, Griffiths, and colleagues have presented a Bayesian account for

how simple theories can be acquired (Kemp et al., 2006, 2010). Their probabilistic gener-

ative model for relational data applies to the chicken-and-egg problem. Building on this

framing, Ullman et al. (2012) proposed a Bayesian grammar-based model of theory

acquisition that simultaneously learns logical laws and the extension of the concepts

related by these laws. Our experiments were partly inspired by this work, and our model-

ing is based mainly on Ullman, Goodman, and Tenenbaum (Ullman et al., 2012). In this

section, we describe our approach to solving the chicken-and-egg problem. We give a

general overview of the model in minimal technical terms, and then explain how the

model relates to the specific learning tasks presented here around which the analysis is

structured. The full formal details of the model are detailed in the Appendix S1, and a

complete technical characterization of a more general model is to be found in Ullman

et al. (2012).

Table 1

Number of children by condition sorting the blocks into 1, 2, or 3 groups

Condition 1 Group 2 Groups 3 Groups

3-Category 0 5 9
2-Category 1 11 2

Bolded Ns highlight the majority sort type by condition.
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6.1. Overview of knowledge representation as a hierarchical probabilistic structure

While the proposal that children and adults represent knowledge as “intuitive theo-

ries” is not new, it was only in recent years that this notion began to be accessible to

computational modeling, through the synthesis of structured symbolic logic and proba-

bilistic inference methods (see Tenenbaum, Kemp, Griffiths, & Goodman, 2011 for a

review, as well as Gerstenberg & Tenenbaum, 1600/1958 for a recent probabilistic pro-

gramming treatment). Following this approach, we assume that learning agents can rep-

resent knowledge in terms of compositional symbols, and that intuitive theories are sets

of laws governing concepts, organized in a predicate logic. As an example of such a

law, consider “objects of type Magnet attract objects of type Metal.” An encapsulated

set of laws and concepts that applies to a particular domain is termed a theory of that

domain. As a relevant example, the set of concepts Magnet, Metal, and Inert, together

with the laws for attraction and repulsion, form the intuitive theory of the domain of

simplified magnetism.

We formalize concepts in an intuitive theory as logical predicates, such as Magnet(X).

We formalize laws in a theory as logical clauses, which relate the predicates that repre-

sent concepts. We use a particular logical clausal form known as a Horn clause (Horn,

1951). Such Horn clauses always take the form of a conjunction of predicates that imply

one other predicate, q  (p1 ˄ p2 ˄ . . . ˄ pn). In our case, an example of a law in an

intuitive theory in Horn clause form would be attracts(X, Y)  Magnet(X) ˄ Metal(Y),

expressing the law “If X is a Magnet and Y is a Metal, then X will attract Y.” Horn

clause logic has been highly influential in the field of logic-based programming and

logic-based AI, forming the basis for the Prolog language (Kowalski, 1979). Horn clauses

have also proven useful in capturing intuitive psychological theories and causal relations

(e.g., Katz et al., 2008; Kemp et al., 2010; Ullman et al., 2012)5.

A domain theory is a set of predicates and laws relating those predicates in Horn

clause form. However, a domain theory does not generate data directly. We must first

assign objects to concepts. For example, consider the law “Attracts(X, Y)  Magnet(X)

˄ Metal(Y).” Suppose we specify that A is a magnet and B is a metal, our law predicts

that A and B attract. However, if instead we specify that C is a magnet instead of A, we

will predict that C and B will attract. Different data can be produced by the same law,

depending on object assignment. By assignment of object to predicate, we mean the spec-

ification of an object for which a predicate evaluates to true when applied to that object.

A complete assignment of objects to predicates is called a model. So, even if a learner

has the right theory, he or she still needs to propose the correct model.
At the theory level, the learner can generate new theories by using a probabilistic gen-

erative grammar. In the same way that an English grammar can generate new sentences

and be used to parse observed sentences, the grammar for theories generates laws and

predicates, and eventually (through assignment of objects to predicates) observable data.

The space of all possible theories that can be generated by this grammar is termed the

universal theory space, and for any reasonably complex grammar, it is very large or even

infinite.
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Not all theories are equally likely to be generated by a grammar, and the probability

of a particular theory being generated a priori of any data is assigned a prior probability.

The prior probability assigned to a theory as a whole is determined by the multiplication

of the individual probabilities of producing the specific laws and predicates that make up

the theory. That is, the production rules that specify the grammar and generate the laws

and predicates that make up a theory are each associated with the probabilities of generat-

ing the different items within the production rule. In this paper, we consider two overall

priors over theories. The first is a Generic Prior, which assumes a uniform distribution

over the production probabilities within production rules. We also consider a Stick Bias
model, in which the production probability of the Sticks predicate is higher than the pro-

duction probability of the Repels predicate. We consider this model because a stick bias

is consistent with the history of early magnetism theories and seems intuitively plausible

if only because the attractive powers of magnets are more salient than their repulsive

properties. Frequencies of naturally observable magnetic phenomena are also biased in

this direction: A magnet can generate attractive forces not only with other magnets but

with iron and other metals; in contrast, only two magnets can generate a repulsive force.

To recap, we consider a structured hierarchical framework, with each level probabilisti-

cally generating the level below it (see Fig. 4). At the topmost level, is the space of pos-

sible theories (all possible combinations of laws and predicates expressible in the logical

form chosen). Below that are theories for given domains (e.g., simplified magnetism).

Beneath that still are models (that is, within the theory of simplified magnetism, specify-

ing object 1 is a Magnet, object 2 is a Metal, and so on), which finally generate and pre-

dict data patterns of objects in the world.

Using this structure, the learning problem for children and adults can now be clearly

stated: Conditioned on a set of observable data, find the theory (set of Horn clauses and

predicates) and model (assignment of objects to predicates) that best account for that

data. Bayesian reasoning supplies the formal notion of “best account”—the desired theory

should both be a priori more likely (provided by the prior probability, the grammar places

on the universal theory space, often favoring simplicity—shorter and fewer rules) but also

explain as much of the data as possible (provided by the likelihood).

The upshot of such a hierarchical framework is that a learner attempting to explain

some observed data is faced with the dual problem of finding the right causal laws that

govern the domain (theory), and the particular extension of the predicates over which the

theory is defined (model). The meaning of the predicates themselves derives from their

extension, in combination with the laws, which captures the chicken-and-egg problem

(Carey, 2009; Quine, 1960).

While finding the best theory and model is a clear characterization of the learning

problem at the computational level, this procedure is not simple from an algorithmic

point of view. Ullman et al. (2012) explored a rational algorithmic approach to this prob-

lem by considering Markov Chain Monte Carlo (MCMC) search methods, which consider

one theory and model at a time and suggest changes to it by editing and resampling pred-

icates, laws, and extensions. Following Goodman et al. (2008), our algorithm begins with

a specific theory t, and then uses the probabilistic Horn-clause grammar (PHCG) to
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propose random changes to the currently held theory by choosing a point along the theory

derivation path and regenerating production choices from that point. This new proposed

theory t0 is probabilistically accepted or rejected, depending on how well the new theory

explains the data compared to the currently held theory, as well as how much simpler or

more complex it is. Ullman et al. (2012) suggested that this method could explain how

practical learners, such as young children, can rationally approximate an ideal Bayesian

analysis. This method allows a practical learner to search over a potentially infinite space

of theories, holding on to one theory at a time and discarding it probabilistically as new,

potentially better alternatives are considered.

The reader is referred to the Appendix S1 for a more in-detail account of the predicate

logic, the priors induced by the grammar, and the search process.

6.2. Modeling results for Experiment 1

The Generic Prior and the Stick Bias modeling results for each phase of the exper-

iment are presented in Fig. 5. Notably, following the ambiguous data, our simulations

Fig. 4. Representation of the relationship between Theory Space, Theory, Model, and Data in the domain of

Magnetism, using Probabilistic Horn-clause Grammars, Predicates/Laws, Assignments, and observed interactions.
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were able to discover the SPS and PSP theories and rated these theories as best given

the data. Given one observed interaction between two unlabeled blocks which should

discriminate between hypotheses PSP and SPS, both models’ posterior probabilities

P(h|d*) increase strongly for the correct hypothesis (relative to the data) over the

alternative, although the Stick Bias model still shows a slight asymmetry in favor of

SPS, inheriting from its prior (Fig. 5, columns 3 & 4).

6.2.1. Priors and sorting
We compared children’s empirical priors obtained in Experiment 1b to the priors in

the models (although the precise profiles of these priors over all eight possible theories

cannot be evaluated without a substantial N). The Stick Prior model predicts more

sticking relations than repel relations; the number of children in the Priors Experiment

1b showing a bias to favor theories with more sticking relations was similarly higher

than chance, two-tailed Binomial test, p < .041. The Generic Prior does not predict

more sticking relations, but it does predict more reuse of “stick” or “repel,” favoring

the SSS and PPP theories over the others; children did not favor the SSS and PPP (2

of 20 children). Thus, children’s responses in the Priors Experiment provide initial

qualitative support for the Stick Bias model over the Generic Prior model. Addition-

ally, almost all of the children sorted according to the magnet-inconsistent rule with

only a handful sorting according to the magnet-consistent rule; this is also consistent

with the Stick Bias prior, which favors the magnet-inconsistent rule over the magnet-

consistent rule.

6.2.2. Ambiguous evidence
The distribution of children’s responses correlated with the Generic Prior model

(r2(73) = .86), but very highly with the Stick Bias model (r2(73) = .95); comparing the

significance of the difference between these two correlation coefficients with Fisher two-

tailed r-to-z transformation revealed significantly higher values for the Stick Bias model’s

fit to data (z (N’s = 75) = �3.23, p = 001). This provides additional evidence that the

Stick Bias model better captured children’s intuitions. We also computed correlation for a

variety of values on the Stick Bias, ranging from .6 to .9; results were robust, with all

correlations of r2 > .95. (See Fig. 5, Column 2.)

6.2.3. Final theories
We also compared how children’s responses distributed across the theories compared

to the model predictions. The distribution of responses in the Magnet Consistent condition
and Magnet Inconsistent condition correlated very well with both models (r2(47) > .93).

As with the ambiguous evidence correlations, these correlations were robust across a

range of values for the Stick Bias model ranging from .6 to .8 (r2(47) > .91); values with

the extreme bias of .9 correlated slightly worse (r2(47) > .84) due to the over-favoring of

the stick-rule. (See Fig. 5)
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6.3. Modeling Experiment 2: Inferring the number of categories given ambiguous data

All of the theories considered have used the same number of underlying core predi-

cates (meaning the same number of conceptual categories appeared in all theories). How-

ever, this is not an imposed requirement, and the actual number of conceptual categories

used in the theory will depend on the observed data.

Ullman et al. (2012) theoretically investigated the results of parametrically varying the

proportion of interactions between metals and magnets. They showed that when there is a

sufficient number of metals and magnets, a rational model mostly discovers theories that

use three categories (one theory being a version of the “correct” intuitive theory that

makes use of all three categories—Inert, Magnet, and Metal). However, when few metals

are present (or equivalently when there are few observable interactions with metals), we

should expect the construction of a simplified theory that makes use of only two

Fig. 5. Predictions of the Generic Prior and Stick Bias models compared to children’s predictions from

Experiment 1 before seeing the evidence (Priors condition, rightmost column 1); after seeing the six unla-

beled blocks interact with the Yellow and Blue blocks (column 2); after observing the final disambiguating

intervention that is magnet consistent (column 3) or after observing the final disambiguating intervention that

is magnet inconsistent (leftmost column 4). The disambiguating intervention consisted of one of three possi-

ble interactions. Darker, blue portions of the bars in column 4 represent the portion of children selecting each

theory after observing a blue–blue interaction; the blue-yellow graded portions of the bars represent the por-

tion of children selecting each theory after observing a blue–yellow interaction; and the lighter yellow por-

tions of the bars capture a yellow-yellow observation.
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conceptual categories—Inert, and a predicate that is a mixture of Metals and Magnets.

This simplified theory predicts metals should interact with other metals, and their failures

to do so are treated as tolerable outliers, as the “price” for using a new predicate and

new causal laws is too high (in terms of a priori probability).

This theoretical result leads to a qualitative prediction regarding the use of two versus

three categories, which is confirmed by the results of Experiment 2, as discussed next.

6.4. Qualitative modeling results for Experiment 2

It is not simple to translate the theoretical results of Ullman et al. (2012) into exact

quantitative predictions about the proportion of children who would infer theories with

two versus three categories, as the analysis relies on a number of free parameters that are

hard to measure independently. Furthermore, the theoretical results originally considered

10 objects interacting, while only seven objects were used in the empirical studies

reported here, to prevent further memory overload. We can overcome these difficulties by

choosing two distinct cases along the spectrum considered by Ullman et al. (2012), and

simplifying them such that they include fewer objects. Case 1 in Ullman et al. originally

considered three Magnets, one Metal, and six Inert objects. By removing three Inert

objects, we make this case equivalent to the 2-Category condition6. Case X in Ullman

et al. originally considered one Magnet, seven Metals, and two Inert objects. By remov-

ing four Metal objects and adding an Inert object, we can make this case similar to the 3-
Category condition, without changing the underlying principles.

Given these simplifications, we can now draw a clear qualitative prediction—in the

case of few metals (Case 1/ 2-Category condition), we would expect more children to

infer a simplified theory with only two categories and fewer causal laws. As the number

of metals increases (Case X/ 3-Category condition), we would expect more children to

infer a theory with three categories.

7. General Discussion

We presented a case study in how preschool-aged children solve the chicken-and-egg

problem of theory learning, jointly identifying causal laws and the hidden categories they

are defined over. Although our research was not designed to capture the radical restruc-

turing associated with some forms of conceptual change (e.g., Carey, 2009), our work

goes beyond work that is simply looking at belief confirmation. Specifically, we tested

the correspondence between children’s inferences at three phases of discovery in a simpli-

fied magnet task and a Bayesian analysis of how ideal learners could solve this task. Our

approach demonstrated how this problem can be solved in principle and provides a gen-

eral framework for describing theory change: a broad language for defining a potentially

infinite space of possible theories, an objective syntax for scoring those theories, and an

algorithmic search framework for discovery.
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In Experiment 1b, we asked whether the distribution over hypotheses that children con-

sider reflects an initial weak bias favoring “attract” relations. We found preschoolers’ ini-

tial responses could be explained qualitatively, assuming a rational model with a prior

that favors the sticking relation. This fit was superior to the Generic Prior model. This

finding echoes the early magnetism theories of Peregrinus, as well as early historical writ-

ings about magnets that are populated with numerous reference to attraction and making

new iron objects “like a magnet,” but have few references to the property of repelling.

The parallels between the biases we found with preschoolers and those found in historical

analysis highlight a difficulty in solving the chicken-and-egg problem in magnetism: How

can a learner overcome a prior bias that supports incorrect theories?

After showing children interactions that were informative about the correct theory but

still ambiguous in a crucial way (analogous to the naturally occurring evidence in the his-

tory of magnetism), we asked whether they would demonstrate an appropriate but focused

uncertainty, restricting beliefs to only those hypotheses consistent with the data but effec-

tively drawing on priors as well as observations to set their posterior degrees of belief.

Results from Experiment 1a suggest that even preschool-aged children can respond

rationally to such ambiguity, favoring the correct two hypotheses over the others initially

considered prior to observing the data. However, only the Stick Bias model qualitatively

captured children’s mild preference for the “reverse-magnet” theory over the correct the-

ory of magnetism, inheriting from its prior preference for hypotheses with more “stick”

relations.

Finally, we asked whether, analogous to William Gilbert’s classic studies, a single crit-

ical intervention between just two blocks could lead children to a strong belief in a single

hypothesis, simultaneously disambiguating the hidden category identities of objects and

the causal rules between categories. We found that even 4-year-old children were sensi-

tive to this single intervention and were able to infer an appropriate causal law (the mag-

net rule following one kind of evidence, and the reverse-magnet rule following the

other.). Even in the course of a short experiment, preschool-aged children were able to

solve a simple version of the chicken-and-egg problem in a basically rational way—inte-

grating multiple pieces of evidence across different phases of the experiment. We suggest

that these same inference capacities help to drive theory change in the normal course of

children’s cognitive development.

In Experiment 2, we asked whether children could infer the total number of categories

based on ambiguous data and no information about the causal laws. Although children

had difficulty sorting the blocks in the 3-Category condition, they were able to infer the

correct number of categories for both conditions, suggesting that at some level, children

were able to abstractly infer the total number of groups. Children’s behavior was qualita-

tively predicted by a Bayesian model, which specified a rational response to the data.

The hierarchical model we presented here relies on stochastic search over logical laws

and predicates that form an “intuitive theory” of a domain. The search for a compressed

logical representation for explaining observed data has been studied mainly under the

heading of Inductive Logical Programming (ILP, for a review see De Raedt & Kersting,).

ILP has not been the main focus of the recent boom in Machine Learning, but it is
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receiving increased attention due to its human-readability, ability to handle much smaller

training sets, and generalizability (e.g., consider the difference between a program con-

taining the few lines of code that generate all and only even numbers between 1 and

1000, and the neural network backend required to achieve the same output). In particular,

hybrid approaches have recently been proposed in which the learned representation is

made of logical laws and predicates, but the program is differentiable in that it is also

simultaneously able to run forward chaining and thus is amenable to current gradient-

search techniques (see in particular Evans & Grefenstette, 2018). While we do not mean

to rule out gradient-based approaches to learning, these new hybrids still rely on prespeci-

fying the possible predicates and their extensions. They are also more limited than a

grammar-based approach, and in that sense have difficulty scaling up and handling the

hard problem of search faced by children.

While many of the “moving parts” of our approach have been proposed before in iso-

lation, we see the contribution of the formal framework here as made up of the sum of

its parts, and its application to children’s learning. That is to say: While hierarchical,

probabilistic grammar- and logic-based models for knowledge representation have been

proposed and studied for adult and machine intelligence (e.g., Kemp et al., 2010, Tenen-

baum et al., 2011), and while the general approach of Bayesian, theory-based reasoning

in children has also been proposed (e.g., Gopnik, 2012), the actual nuts-and-bolts imple-

mentation and investigation of intuitive theory acquisition and its dynamics in a microge-

netic case with a grammar-based model that can allow for many potential theories in an

open-ended way is an exciting current direction. With the growing interest in the

Machine Learning community in building machines that learn like children (Lake, Ull-

man, Tenenbaum, & Gershman, 2017), we think it is useful to propose how that learning

could work, in formal terms.

The strength of our model is in its general applicability to domains that require reason-

ing in the form of intuitive theories. However, we readily accept that the full mechanics

may appear too cumbersome for any one given domain. For example, while our model is

able to construct a stick-biased domain theory for simplified magnetism, surely a simpler

model could have discovered the same without the need to propose logical rules from a

context-free grammar over all Horn clauses. The argument for simpler models has merit,

but only in a domain-limited fashion. By analogy, consider a model for predicting

whether a tower of blocks is stable (cf. Battaglia et al., 2013). One computational pro-

posal (the “mental physics-engine”) is that people reconstruct the tower of blocks in their

minds, and then run simplified noisy Newtonian physics to examine whether the recon-

structed simulated blocks fall. Such a proposal can recapture people’s judgment, but at

what cost? A much simpler combination of features such as “how tall is the tower” can

achieve similar results, and without the cumbersome overhead of having to represent 3D

objects and run dynamical equations. However, the force of the richer representation

approach is in generality. If one were to ask people where the blocks will fall, entirely

new features must be constructed and trained, whereas the same physics-engine recon-

struction can be run with a different query (see also Lake et al., 2017). This argument by

analogy is not meant to convince that a richer representation for children’s learning is
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necessarily true, but to point to its potential. Further microgenetic investigations in other

domains are necessary before the specter of “simpler models” can be ruled out.

How can children have learned the correct rule in the course of our short experiments

when historically such theory change can take centuries (e.g., Carey, 2009)? While histor-

ical analogies can provide some insight into the difficulties and strategies of intuitive the-

ory discovery (Hacking, 1993; Kitcher, 1988; Kuhn, 1982; Nersessian, 1992), there are

several ways in which our study with children was simpler than most cases of theory

change in science—and in particular, than the historical case that inspired it. In Experi-

ment 1, for example, children are told in advance that there are just two kinds of objects,

and they are shown the critical interventional data without having to come up with the

intervention themselves. However, much research shows that the process of designing

informative experiments and controlling for variables is difficult for children and adults

alike (Klahr et al., 1993; Kuhn, 1989; Schauble, 1990). Indeed, this task could be viewed

as requiring “hypothesis search and formation” without requiring “experimental search

and design” as in the well-known cognitive models of dual search (Klahr & Dunbar,

1988). Children in our task did not have to be metacognitively aware of how to design

informative interventions, although that is an inexorable part of the problem scientists

face. Furthermore, the children in our populations grow up in a culture that teaches physi-

cal, causally mechanistic explanations, which may scaffold learning in these domains and

help children recognize the role of uncertainty in theory-change (e.g., Metz, 2004). In

contrast, scientists such as Gilbert were surrounded by magical-spiritual frameworks

(Ferngren, 2002), which may have provided satisfactory, deterministic, alternative expla-

nations for hidden forces, such as magnetism7. Nonetheless, given the myriad ways that

learners can respond to anomalous data (Chinn & Brewer, 1998), it is particularly impres-

sive that preschoolers in our task overwhelming accepted the data and made appropriate

changes to their beliefs.

Despite these differences, however, we suggest that our results can take the “child as

scientist” analogy to a new level of empirical richness and computational rigor. Children

as young as 4 years old can respond reasonably in the face of theory ambiguity, choose

approximately rationally between competing hypotheses, and rapidly learn from disam-

biguating evidence.

The focus of this work has been to demonstrate empirically a case where children can

solve the chicken-and-egg problem and to formalize and test a computational-level model

(Marr, 1982) for how ideal learning might deal with the ambiguity inherent in this problem.

The Bayesian computations needed for theory learning—in particular, those needed to solve

the chicken-and-egg problem in the presence of even slightly complicated patterns of data—
are complex; it seems likely that children are not exactly implementing all the necessary

Bayesian calculations, not even unconsciously or implicitly. This work has started to experi-

mentally explore the connections between algorithmic and computational accounts (e.g., how

learners might be carrying out approximate rational inference), via search algorithms such as

MCMC, as proposed theoretically by Ullman et al. (2012). Other research has looked at

whether learners sample a small subset of hypotheses to evaluate, rather than performing

Bayesian inference over a potentially infinite space of hypotheses (Bonawitz et al., 2014;
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Bonawitz, Denison, Griffiths, & Gopnik, 2011; Bonawitz & Griffiths, 2010, in review; Good-

man et al., 2008; Vul et al., 2009; Vul & Pashler, 2008) and other studies suggest cases where

children’s causal inferences might also be accounted for by this approach (Bonawitz, Deni-

son, Gopnik, & Griffiths, 2014; Denison et al., 2013). Future work is needed to explore pre-

cisely the algorithmic steps by which children might approximate rational Bayesian learners

and the cases where children fail to approximate them.

This study is a promising starting point, demonstrating parallels between inferences made

by children, those made in the history of science, and those made by a rational Bayesian lear-

ner: Children appropriately push away (even a priori likely) hypotheses that are not well sup-

ported by the data and stick with the evidence to rationally revise their beliefs.
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Notes

1. The gender of a few participants was not recorded.

2. The first two trials were counterbalanced (blue, yellow); the remaining trials were

randomly dictated by whichever type of unlabeled block the experimenter happened

to grab.

3. While the majority of children stated that they had played with magnets previously,

almost no children believed that these blocks were like magnets.

4. Although one of the familiarization tasks involved actual magnets, because the test

blocks involved lighting we did not expect carryover from the initialization phase.

Furthermore, if children somehow were primed by this warm-up phase to consider

magnets, we note first that the prime was for one-category grouping (which did not

match either experimental test phase) and second that children in both experimental

conditions received the same warm-up, so any bias from this initial warmup could

not explain differential performance between conditions.

5. We refer the reader to the Appendix S1 for more formal and technical details, but

stress here that Horn clauses are one way for capturing causal structure in formal
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predicate logic. This does not mean that we are committed to the mind using Horn

clause representations, but that it is a useful simplified Language-of-Thought pro-

posal, and we expect other approaches that consider theory learning as stochastic

search over logical laws to follow a similar overall dynamics.

6. A matching 2-Category condition would technically include four magnetic block and 0

metals; the data produced by this 2-Category condition is identical to the Ullman et al.

(2012) example of three magnetic blocks, one metal block, and three inert blocks.

7. We thank an anonymous reviewer on an earlier iteration of the research for draw-

ing our attention to this explanation.
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